A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. The boundary of no escape is called the event horizon. In general relativity, a black hole’s event horizon seals an object’s fate but produces no locally detectable change when crossed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.
Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace. In 1916, Karl Schwarzschild found the first modern solution of general relativity that would characterise a black hole. Due to his influential research, the Schwarzschild metric is named after him. David Finkelstein, in 1958, first published the interpretation of "black hole" as a region of space from which nothing can escape. Black holes were long considered a mathematical curiosity; it was not until the 1960s that theoretical work showed they were a generic prediction of general relativity. The first black hole known was Cygnus X-1, identified by several researchers independently in 1971.
Black holes typically form when massive stars collapse at the end of their life cycle. After a black hole has formed, it can grow by absorbing mass from its surroundings. Supermassive black holes of millions of Solar mass may form by absorbing other stars and merging with other black holes, or via direct collapse of . There is consensus that supermassive black holes exist in the centres of most galaxies.
The presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Matter falling toward a black hole can form an accretion disk of infalling plasma, heated by friction and emitting light. In extreme cases, this creates a quasar, some of the brightest objects in the universe. Stars passing too close to a supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed." If other stars are orbiting a black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as . In this way, astronomers have identified numerous stellar black hole candidates in binary star and established that the radio source known as Sagittarius A*, at the core of the Milky Way galaxy, contains a supermassive black hole of about 4.3 million Solar energy masses.
Michell's idea, in a short part of a letter published in 1784, calculated that a star with the same density but 500 times the radius of the sun would not let any emitted light escape; the surface escape velocity would exceed the speed of light. Michell correctly noted that such supermassive but non-radiating bodies might be detectable through their gravitational effects on nearby visible bodies.
In 1796, Laplace mentioned that a star could be invisible if it were sufficiently large while speculating on the origin of the Solar System in his book Exposition du Système du Monde. Franz Xaver von Zach asked Laplace for a mathematical analysis, which Laplace provided and published in journal edited by von Zach.
Scholars of the time were initially excited by the proposal that giant but invisible 'dark stars' might be hiding in plain view, but enthusiasm dampened when the wavelike nature of light became apparent in the early nineteenth century, since light was understood as a wave rather than a particle, it was unclear what, if any, influence gravity would have on escaping light waves.
In 1924, Arthur Eddington showed that the singularity disappeared after a change of coordinates. In 1933, Georges Lemaître realised that this meant the singularity at the Schwarzschild radius was a non-physical coordinate singularity. Arthur Eddington commented on the possibility of a star with mass compressed to the Schwarzschild radius in a 1926 book, noting that Einstein's theory allows us to rule out overly large densities for visible stars like Betelgeuse because "a star of 250 million km radius could not possibly have so high a density as the Sun. Firstly, the force of gravitation would be so great that light would be unable to escape from it, the rays falling back to the star like a stone to the earth. Secondly, the red shift of the spectral lines would be so great that the spectrum would be shifted out of existence. Thirdly, the mass would produce so much curvature of the spacetime metric that space would close up around the star, leaving us outside (i.e., nowhere)."
In 1931, Subrahmanyan Chandrasekhar calculated, using special relativity, that a non-rotating body of electron-degenerate matter above a certain limiting mass (now called the Chandrasekhar limit at ) has no stable solutions. His arguments were opposed by many of his contemporaries like Eddington and Lev Landau, who argued that some yet unknown mechanism would stop the collapse. They were partly correct: a white dwarf slightly more massive than the Chandrasekhar limit will collapse into a neutron star, which is itself stable.
In 1939, Robert Oppenheimer and George Volkoff predicted that neutron stars above another limit, the Tolman–Oppenheimer–Volkoff limit, would collapse further for the reasons presented by Chandrasekhar, and concluded that no law of physics was likely to intervene and stop at least some stars from collapsing to black holes. Their original calculations, based on the Pauli exclusion principle, gave it as . Subsequent consideration of neutron-neutron repulsion mediated by the strong force raised the estimate to approximately to . Observations of the neutron star merger GW170817, which is thought to have generated a black hole shortly afterward, have refined the TOV limit estimate to ~.
Oppenheimer and his co-authors interpreted the singularity at the boundary of the Schwarzschild radius as indicating that this was the boundary of a bubble in which time stopped. This is a valid point of view for external observers, but not for infalling observers. The hypothetical collapsed stars were called "frozen stars", because an outside observer would see the surface of the star frozen in time at the instant where its collapse takes it to the Schwarzschild radius.
Also in 1939, Einstein attempted to prove that black holes were impossible in his publication "On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses", using his theory of general relativity to defend his argument. Months later, Oppenheimer and his student Hartland Snyder provided the Oppenheimer–Snyder model in their paper "On Continued Gravitational Contraction", which predicted the existence of black holes. In the paper, which made no reference to Einstein's recent publication, Oppenheimer and Snyder used Einstein's own theory of general relativity to show the conditions on how a black hole could develop, for the first time in contemporary physics.
In 1958, David Finkelstein identified the Schwarzschild surface as an event horizon, "a perfect unidirectional membrane: causal influences can cross it in only one direction". Finkelstein created a new reference frame to include the point of view of infalling observers. Finkelstein's solution extended the Schwarzschild solution for the future of observers falling into a black hole. A similar concept had already been found by Martin Kruskal but Wheeler had not understood its significance. Eventually the Kruskal–Szekeres coordinates helped physics understand black holes from multiple perspectives.
In this period more general black hole solutions were found. In 1963, Roy Kerr found Kerr metric for a rotating black hole. Two years later, Ezra Newman found the axisymmetric solution for a black hole that is both rotating and electrically charged. Through the work of Werner Israel, Brandon Carter, and David Robinson the no-hair theorem emerged, stating that a stationary black hole solution is completely described by the three parameters of the Kerr–Newman metric: mass, angular momentum, and electric charge.
At first, it was suspected that the strange features of the black hole solutions were pathological artefacts from the symmetry conditions imposed, and that the singularities would not appear in generic situations. This view was held in particular by Vladimir Belinsky, Isaak Khalatnikov, and Evgeny Lifshitz, who tried to prove that no singularities appear in generic solutions. However, in the late 1960s Roger Penrose and Stephen Hawking used global techniques to prove that singularities appear generically. For this work, Penrose received half of the 2020 Nobel Prize in Physics, Hawking having died in 2018.
Astronomical observations also made great strides during this era. In 1967 Antony Hewish and Jocelyn Bell Burnell discovered and by 1969, these were shown to be rapidly rotating neutron stars. Until that time, neutron stars, like black holes, were regarded as just theoretical curiosities; but the discovery of pulsars showed their physical relevance and spurred a further interest in all types of compact objects that might be formed by gravitational collapse.
Based on observations in Greenwich and Toronto in the early 1970s, Cygnus X-1, a galactic X-ray source discovered in 1964, became the first astronomical object commonly accepted to be a black hole.
Work by James Bardeen, Jacob Bekenstein, Carter, and Hawking in the early 1970s led to the formulation of black hole thermodynamics. These laws describe the behaviour of a black hole in close analogy to the laws of thermodynamics by relating mass to energy, area to entropy, and surface gravity to temperature. The analogy was completed when Hawking, in 1974, showed that quantum field theory implies that black holes should radiate like a black body with a temperature proportional to the surface gravity of the black hole, predicting the effect now known as Hawking radiation.
The no-hair theorem postulates that, once it achieves a stable condition after formation, a black hole has only three independent physical properties: mass, electric charge, and angular momentum; the black hole is otherwise featureless. If the conjecture is true, any two black holes that share the same values for these properties, or parameters, are indistinguishable from one another. The degree to which the conjecture is true for real black holes under the laws of modern physics is currently an unsolved problem.
These properties are special because they are visible from outside a black hole. For example, a charged black hole repels other like charges just like any other charged object. Similarly, the total mass inside a sphere containing a black hole can be found by using the gravitational analogue of Gauss's law (through the ADM mass), far away from the black hole. Likewise, the angular momentum (or spin) can be measured from far away using frame dragging by the gravitomagnetism, through for example the Lense–Thirring effect.
When an object falls into a black hole, any information about the shape of the object or distribution of charge on it is evenly distributed along the horizon of the black hole, and is lost to outside observers. The behaviour of the horizon in this situation is a dissipative system that is closely analogous to that of a conductive stretchy membrane with friction and electrical resistance—the membrane paradigm.
Because a black hole eventually achieves a stable state with only three parameters, there is no way to avoid losing information about the initial conditions: the gravitational and electric fields of a black hole give very little information about what went in. The information that is lost includes every quantity that cannot be measured far away from the black hole horizon, including Conservation law such as the total baryon number and lepton number. This behaviour is so puzzling that it has been called the black hole information loss paradox.
Solutions describing more general black holes also exist. Non-rotating charged black holes are described by the Reissner–Nordström metric, while the Kerr metric describes a non-charged rotating black hole. The most general stationary black hole solution known is the Kerr–Newman metric, which describes a black hole with both charge and angular momentum.
While the mass of a black hole can take any positive value, the charge and angular momentum are constrained by the mass. The total electric charge Q and the total angular momentum J are expected to satisfy the inequality
for a black hole of mass M. Black holes with the minimum possible mass satisfying this inequality are called extremal. Solutions of Einstein's equations that violate this inequality exist, but they do not possess an event horizon. These solutions have so-called naked singularities that can be observed from the outside, and hence are deemed unphysical. The cosmic censorship hypothesis rules out the formation of such singularities, when they are created through the gravitational collapse of realistic matter. This is supported by numerical simulations.
Due to the relatively large strength of the electromagnetism, black holes forming from the collapse of stars are expected to retain the nearly neutral charge of the star. Rotation, however, is expected to be a universal feature of compact astrophysical objects. The black-hole candidate binary X-ray source GRS 1915+105 appears to have an angular momentum near the maximum allowed value. That uncharged limit is
allowing definition of a dimensionless spin parameter such that
As predicted by general relativity, the presence of a mass deforms spacetime in such a way that the paths taken by particles bend towards the mass. At the event horizon of a black hole, this deformation becomes so strong that there are no paths that lead away from the black hole.
In a thought experiment, a distant observer can imagine clocks near a black hole which would appear to tick more slowly than those farther away from the black hole. This effect, known as gravitational time dilation, would also cause an object falling into a black hole to appear to slow as it approaches the event horizon, taking an infinite amount of time to reach it. All processes on this object would appear to slow down, from the viewpoint of a fixed outside observer, and any light emitted by the object to appear redder and dimmer, an effect known as gravitational redshift. Eventually, the falling object fades away until it can no longer be seen. Typically this process happens very rapidly with an object disappearing from view within less than a second.
On the other hand, imaginary, indestructible observers falling into a black hole would not notice any of these effects as they cross the event horizon. Their own clocks appear to them to tick normally, they cross the event horizon after a finite time without noting any singular behaviour.
In general relativity, it is impossible to determine the location of the event horizon from local observations, due to Einstein's equivalence principle.
The topology of the event horizon of a black hole at equilibrium is always spherical. For non-rotating (static) black holes the geometry of the event horizon is precisely spherical, while for rotating black holes the event horizon is oblate.
Even though the Schwarzschild model is not valid at the singularity, observers falling into a Schwarzschild black hole (i.e., non-rotating and not charged) cannot avoid being carried into the singularity once they cross the event horizon. They can prolong the experience by accelerating away to slow their descent, but only up to a limit. When they reach the singularity, they are crushed to infinite density and their mass is added to the total of the black hole. Before that happens, they will have been torn apart by the growing in a process sometimes referred to as spaghettification or the "noodle effect".
In the case of a charged (Reissner–Nordström) or rotating (Kerr) black hole, it is possible to avoid the singularity. Extending these solutions as far as possible reveals the hypothetical possibility of exiting the black hole into a different spacetime with the black hole acting as a wormhole. The possibility of travelling to another universe is, however, only theoretical since any perturbation would destroy this possibility. It also appears to be possible to follow closed timelike curves (returning to one's own past) around the Kerr singularity, which leads to problems with causality like the grandfather paradox. It is expected that none of these peculiar effects would survive in a proper quantum treatment of rotating and charged black holes.
The appearance of singularities in general relativity signals the breakdown of the theory. This breakdown occurs where quantum effects should describe these actions, due to the extremely high density and therefore particle interactions. To date, it has not been possible to combine quantum and gravitational effects into a single theory, although there exist attempts to formulate such a theory of quantum gravity. It is generally expected that such a theory will not feature singularities.
While light can still escape from the photon sphere, any light that crosses the photon sphere on an inbound trajectory will be captured by the black hole. Hence any light that reaches an outside observer from the photon sphere must have been emitted by objects between the photon sphere and the event horizon. For a Kerr black hole the radius of the photon sphere depends on the spin parameter and on the details of the photon orbit, which can be prograde (the photon rotates in the same sense of the black hole spin) or retrograde.
The ergosphere of a black hole is a volume bounded by the black hole's event horizon and the ergosurface, which coincides with the event horizon at the poles but is at a much greater distance around the equator.
Objects and radiation can escape normally from the ergosphere. Through the Penrose process, objects can emerge from the ergosphere with more energy than they entered with. The extra energy is taken from the rotational energy of the black hole. Thereby the rotation of the black hole slows down. A variation of the Penrose process in the presence of strong magnetic fields, the Blandford–Znajek process is considered a likely mechanism for the enormous luminosity and relativistic jets of quasars and other active galactic nuclei.
Penrose demonstrated that once an event horizon forms, general relativity without quantum mechanics requires that a singularity will form within. Shortly afterwards, Hawking showed that many cosmological solutions that describe the Big Bang have singularities without or other exotic matter. The Kerr solution, the no-hair theorem, and the laws of black hole thermodynamics showed that the physical properties of black holes were simple and comprehensible, making them respectable subjects for research. Conventional black holes are formed by gravitational collapse of heavy objects such as stars, but they can also in theory be formed by other processes.
The collapse may be stopped by the degeneracy pressure of the star's constituents, allowing the condensation of matter into an exotic denser state. The result is one of the various types of compact star. Which type forms depends on the mass of the remnant of the original star left if the outer layers have been blown away (for example, in a Type II supernova). The mass of the remnant, the collapsed object that survives the explosion, can be substantially less than that of the original star. Remnants exceeding are produced by stars that were over before the collapse.
If the mass of the remnant exceeds about (the Tolman–Oppenheimer–Volkoff limit), either because the original star was very heavy or because the remnant collected additional mass through accretion of matter, even the degeneracy pressure of is insufficient to stop the collapse. No known mechanism (except possibly quark degeneracy pressure) is powerful enough to stop the implosion and the object will inevitably collapse to form a black hole.
The gravitational collapse of heavy stars is assumed to be responsible for the formation of stellar mass black holes. Star formation in the early universe may have resulted in very massive stars, which upon their collapse would have produced black holes of up to . These black holes could be the seeds of the supermassive black holes found in the centres of most galaxies. It has further been suggested that massive black holes with typical masses of ~ could have formed from the direct collapse of gas clouds in the young universe. These massive objects have been proposed as the seeds that eventually formed the earliest quasars observed already at redshift . Some candidates for such objects have been found in observations of the young universe.
While most of the energy released during gravitational collapse is emitted very quickly, an outside observer does not actually see the end of this process. Even though the collapse takes a finite amount of time from the reference frame of infalling matter, a distant observer would see the infalling material slow and halt just above the event horizon, due to gravitational time dilation. Light from the collapsing material takes longer and longer to reach the observer, with the light emitted just before the event horizon forms delayed an infinite amount of time. Thus the external observer never sees the formation of the event horizon; instead, the collapsing material seems to become dimmer and increasingly red-shifted, eventually fading away.
Despite the early universe being extremely density, it did not re-collapse into a black hole during the Big Bang, since the expansion rate was greater than the attraction. Following inflation theory, general relativity predicts that the gravitational field slows the expansion of the universe.The negative pressure overcomes the positive energy density to produce a net repulsive gravitational field.
Models for the gravitational collapse of objects of relatively constant size, such as , do not necessarily apply in the same way to rapidly expanding space such as the Big Bang.
This would put the creation of black holes firmly out of reach of any high-energy process occurring on or near the Earth. However, certain developments in quantum gravity suggest that the minimum black hole mass could be much lower: some braneworld scenarios for example put the boundary as low as . This would make it conceivable for micro black holes to be created in the high-energy collisions that occur when hit the Earth's atmosphere, or possibly in the Large Hadron Collider at CERN. These theories are very speculative, and the creation of black holes in these processes is deemed unlikely by many specialists. Even if micro black holes could be formed, it is expected that they would evaporate in about 10 seconds, posing no threat to the Earth.
A stellar black hole of has a Hawking temperature of 62 . This is far less than the 2.7 K temperature of the cosmic microwave background radiation. Stellar-mass or larger black holes receive more mass from the cosmic microwave background than they emit through Hawking radiation and thus will grow instead of shrinking. To have a Hawking temperature larger than 2.7 K (and be able to evaporate), a black hole would need a mass less than the Moon. Such a black hole would have a diameter of less than a tenth of a millimetre.
If a black hole is very small, the radiation effects are expected to become very strong. A black hole with the mass of a car would have a diameter of about 10 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/ c would take less than 10 seconds to evaporate completely. For such a small black hole, quantum gravity effects are expected to play an important role and could hypothetically make such a small black hole stable, although current developments in quantum gravity do not indicate this is the case.
The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes. NASA's Fermi Gamma-ray Space Telescope launched in 2008 will continue the search for these flashes.
If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 10 years. A supermassive black hole with a mass of will evaporate in around 2×10 years.. See in particular equation (27). During the collapse of a supercluster of galaxies, supermassive black holes are predicted to grow to perhaps . Even these would evaporate over a timescale of up to 10 years. See page 596: table1 and section "black hole decay" and previous sentence on that page.
After two years of data processing, EHT released its first image of a black hole, at the center of the Messier 87 galaxy. What is visible is not the black hole—which shows as black because of the loss of all light within this dark region. Instead, it is the gases at the edge of the event horizon, displayed as orange or red, that define the black hole.
On 12 May 2022, the EHT released the first image of Sagittarius A*, the supermassive black hole at the centre of the Milky Way galaxy. The published image displayed the same ring-like structure and "shadow" seen in the M87* black hole. The boundary of the shadow or area of less brightness matches the predicted gravitationally lensed photon orbits. The image was created using the same techniques as for the M87 black hole. The imaging process for Sagittarius A*, which is more than a thousand times smaller and less massive than M87*, was significantly more complex because of the instability of its surroundings. The image of Sagittarius A* was partially blurred by turbulent plasma on the way to the galactic centre, an effect which prevents resolution of the image at longer wavelengths.
The brightening of this material in the 'bottom' half of the processed EHT image is thought to be caused by Doppler beaming, whereby material approaching the viewer at relativistic speeds is perceived as brighter than material moving away. In the case of a black hole, this phenomenon implies that the visible material is rotating at relativistic speeds (>), the only speeds at which it is possible to centrifugally balance the immense gravitational attraction of the singularity, and thereby remain in orbit above the event horizon. This configuration of bright material implies that the EHT observed M87* from a perspective catching the black hole's accretion disc nearly edge-on, as the whole system rotated clockwise.
The extreme gravitational lensing associated with black holes produces the illusion of a perspective that sees the accretion disc from above. In reality, most of the ring in the EHT image was created when the light emitted by the far side of the accretion disc bent around the black hole's gravity well and escaped, meaning that most of the possible perspectives on M87* can see the entire disc, even that directly behind the "shadow".
In 2015, the EHT detected magnetic fields just outside the event horizon of Sagittarius A* and even discerned some of their properties. The field lines that pass through the accretion disc were a complex mixture of ordered and tangled. Theoretical studies of black holes had predicted the existence of magnetic fields.
In April 2023, an image of the shadow of the Messier 87 black hole and the related high-energy jet, viewed together for the first time, was presented.
More importantly, the signal observed by LIGO also included the start of the post-merger ringdown, the signal produced as the newly formed compact object settles down to a stationary state. Arguably, the ringdown is the most direct way of observing a black hole. From the LIGO signal, it is possible to extract the frequency and damping time of the dominant mode of the ringdown. From these, it is possible to infer the mass and angular momentum of the final object, which match independent predictions from numerical simulations of the merger. The frequency and decay time of the dominant mode are determined by the geometry of the photon sphere. Hence, observation of this mode confirms the presence of a photon sphere; however, it cannot exclude possible exotic alternatives to black holes that are compact enough to have a photon sphere.
The observation also provides the first observational evidence for the existence of stellar-mass black hole binaries. Furthermore, it is the first observational evidence of stellar-mass black holes weighing 25 solar masses or more.
Since then, many more gravitational wave events have been observed.
Since then, one of the stars—called S2—has completed a full orbit. From the orbital data, astronomers were able to refine the calculations of the mass to and a radius of less than 0.002 light-years for the object causing the orbital motion of those stars. The upper limit on the object's size is still too large to test whether it is smaller than its Schwarzschild radius. Nevertheless, these observations strongly suggest that the central object is a supermassive black hole as there are no other plausible scenarios for confining so much invisible mass into such a small volume. Additionally, there is some observational evidence that this object might possess an event horizon, a feature unique to black holes.
Within such a disk, friction would cause angular momentum to be transported outward, allowing matter to fall farther inward, thus releasing potential energy and increasing the temperature of the gas.
When the accreting object is a neutron star or a black hole, the gas in the inner accretion disk orbits at very high speeds because of its proximity to the compact object. The resulting friction is so significant that it heats the inner disk to temperatures at which it emits vast amounts of electromagnetic radiation (mainly ). These bright X-ray sources may be detected by telescopes. This process of accretion is one of the most efficient energy-producing processes known. Up to 40% of the rest mass of the accreted material can be emitted as radiation. In nuclear fusion only about 0.7% of the rest mass will be emitted as energy. In many cases, accretion disks are accompanied by relativistic jets that are emitted along the poles, which carry away much of the energy. The mechanism for the creation of these jets is currently not well understood, in part due to insufficient data.
As such, many of the universe's more energetic phenomena have been attributed to the accretion of matter on black holes. In particular, active galactic nuclei and are believed to be the accretion disks of supermassive black holes. Similarly, X-ray binaries are generally accepted to be binary star systems in which one of the two stars is a compact object accreting matter from its companion. It has also been suggested that some ultraluminous X-ray sources may be the accretion disks of intermediate-mass black holes.
Stars have been observed to get torn apart by tidal forces in the immediate vicinity of supermassive black holes in galaxy nuclei, in what is known as a tidal disruption event (TDE). Some of the material from the disrupted star forms an accretion disk around the black hole, which emits observable electromagnetic radiation.
In November 2011 the first direct observation of a quasar accretion disk around a supermassive black hole was reported.
If such a system emits signals that can be directly traced back to the compact object, it cannot be a black hole. The absence of such a signal does, however, not exclude the possibility that the compact object is a neutron star. By studying the companion star it is often possible to obtain the orbital parameters of the system and to obtain an estimate for the mass of the compact object. If this is much larger than the Tolman–Oppenheimer–Volkoff limit (the maximum mass a star can have without collapsing) then the object cannot be a neutron star and is generally expected to be a black hole.
The first strong candidate for a black hole, Cygnus X-1, was discovered in this way by Charles Thomas Bolton, Louise Webster, and Paul Murdin in 1972. Some doubt remained, due to the uncertainties that result from the companion star being much heavier than the candidate black hole. Currently, better candidates for black holes are found in a class of X-ray binaries called soft X-ray transients. In this class of system, the companion star is of relatively low mass allowing for more accurate estimates of the black hole mass. These systems actively emit X-rays for only several months once every 10–50 years. During the period of low X-ray emission, called quiescence, the accretion disk is extremely faint, allowing detailed observation of the companion star during this period. One of the best such candidates is V404 Cygni.
Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279+5255 and the Sombrero Galaxy.
It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole. The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's galactic bulge, known as the M–sigma relation, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.
Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around Sagittarius A*.
Since the average density of a black hole inside its Schwarzschild radius is inversely proportional to the square of its mass, supermassive black holes are much less dense than stellar black holes. The average density of a black hole is comparable to that of water. Consequently, the physics of matter forming a supermassive black hole is much better understood and the possible alternative explanations for supermassive black hole observations are much more mundane. For example, a supermassive black hole could be modelled by a large cluster of very dark objects. However, such alternatives are typically not stable enough to explain the supermassive black hole candidates.
The evidence for the existence of stellar and supermassive black holes implies that in order for black holes not to form, general relativity must fail as a theory of gravity, perhaps due to the onset of quantum mechanical corrections. A much anticipated feature of a theory of quantum gravity is that it will not feature singularities or event horizons and thus black holes would not be real artefacts. For example, in the fuzzball model based on string theory, the individual states of a black hole solution do not generally have an event horizon or singularity, but for a classical/semiclassical observer the statistical average of such states appears just as an ordinary black hole as deduced from general relativity.
A few theoretical objects have been conjectured to match observations of astronomical black hole candidates identically or near-identically, but which function via a different mechanism. These include the gravastar, the black star, related nestar and the dark-energy star.
The link with the laws of thermodynamics was further strengthened by Hawking's discovery in 1974 that quantum field theory predicts that a black hole radiates blackbody radiation at a constant temperature. This seemingly causes a violation of the second law of black hole mechanics, since the radiation will carry away energy from the black hole causing it to shrink. The radiation also carries away entropy, and it can be proven under general assumptions that the sum of the entropy of the matter surrounding a black hole and one quarter of the area of the horizon as measured in Planck units is in fact always increasing. This allows the formulation of the first law of black hole mechanics as an analogue of the first law of thermodynamics, with the mass acting as energy, the surface gravity as temperature and the area as entropy.
One puzzling feature is that the entropy of a black hole scales with its area rather than with its volume, since entropy is normally an extensive quantity that scales linearly with the volume of the system. This odd property led Gerard 't Hooft and Leonard Susskind to propose the holographic principle, which suggests that anything that happens in a volume of spacetime can be described by data on the boundary of that volume.
Although general relativity can be used to perform a semiclassical calculation of black hole entropy, this situation is theoretically unsatisfying. In statistical mechanics, entropy is understood as counting the number of microscopic configurations of a system that have the same macroscopic qualities, such as mass, charge, pressure, etc. Without a satisfactory theory of quantum gravity, one cannot perform such a computation for black holes. Some progress has been made in various approaches to quantum gravity. In 1995, Andrew Strominger and Cumrun Vafa showed that counting the microstates of a specific supersymmetric black hole in string theory reproduced the Bekenstein–Hawking entropy. Since then, similar results have been reported for different black holes both in string theory and in other approaches to quantum gravity like loop quantum gravity.
The question whether information is truly lost in black holes (the black hole information paradox) has divided the theoretical physics community. In quantum mechanics, loss of information corresponds to the violation of a property called unitarity, and it has been argued that loss of unitarity would also imply violation of conservation of energy, though this has also been disputed. Over recent years evidence has been building that indeed information and unitarity are preserved in a full quantum gravitational treatment of the problem.
One attempt to resolve the black hole information paradox is known as black hole complementarity. In 2012, the "firewall paradox" was introduced with the goal of demonstrating that black hole complementarity fails to solve the information paradox. According to quantum field theory in curved spacetime, a single emission of Hawking radiation involves two mutually entangled particles. The outgoing particle escapes and is emitted as a quantum of Hawking radiation; the infalling particle is swallowed by the black hole. Assume a black hole formed a finite time in the past and will fully evaporate away in some finite time in the future. Then, it will emit only a finite amount of information encoded within its Hawking radiation. According to research by physicists like Don Page and Leonard Susskind, there will eventually be a time by which an outgoing particle must be entangled with all the Hawking radiation the black hole has previously emitted.
This seemingly creates a paradox: a principle called "monogamy of entanglement" requires that, like any quantum system, the outgoing particle cannot be fully entangled with two other systems at the same time; yet here the outgoing particle appears to be entangled both with the infalling particle and, independently, with past Hawking radiation. In order to resolve this contradiction, physicists may eventually be forced to give up one of three time-tested principles: Einstein's equivalence principle, unitarity, or local quantum field theory. One possible solution, which violates the equivalence principle, is that a "firewall" destroys incoming particles at the event horizon. In general, which—if any—of these assumptions should be abandoned remains a topic of debate.
Golden age
Observation
Etymology
Properties and structure
Physical properties
Black holes are commonly classified according to their mass, independent of angular momentum, J. The size of a black hole, as determined by the radius of the event horizon, or Schwarzschild radius, is proportional to the mass, M, through
where r is the Schwarzschild radius and is the solar mass. For a black hole with nonzero spin or electric charge, the radius is smaller, until an extremal black hole could have an event horizon close to
+ Black hole classifications >1,000 AU 0.001–400 AU 10 km ≈ Earth radius 30 km up to 0.1 mm
Event horizon
Singularity
Photon sphere
Ergosphere
Innermost stable circular orbit (ISCO)
Plunging region
Formation and evolution
Gravitational collapse
Primordial black holes and the Big Bang
High-energy collisions
Growth
Evaporation
Observational evidence
Direct interferometry
Detection of gravitational waves from merging black holes
Stars orbiting Sagittarius A*
Accretion of matter
X-ray binaries
Quasi-periodic oscillations
Galactic nuclei
Microlensing
Alternatives
Open questions
Entropy and thermodynamics
Information loss paradox
In science fiction
See also
Notes
Sources
Further reading
Popular reading
University textbooks and monographs
Review papers
External links
Videos
|
|